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ABSTRACT

Conjoint measurement theory is examined through a

prototype example in which a fighter aircraft is subjectively

rated on two factors. As a first step, a multifactor ordinal

scale is developed. This ordinal scale provides a meaningful

measure of aircraft quality. Interval scales of aircraft

quality are produced by the basic analysis of variance model

and two conjoint measurement methods: delta scaling and the

computer algorithm MONANOVA. These methods produce interval

scales that differ by constant factors, as guaranteed by

the theorem for additive conjoint measurement. The interval
scale does not appear to be an improvement over the ordinal

scale in the prototype example. There is no assurance that

a specific conjoint measurement model can be used to "improve"

4e data. Major changes in the interval scales are caused

by small perturbations in the rating matrix.
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INTRODUCTION

Subjective assessments of aircraft quality and pilot

workload have been shown to be practical, minimally intrusive,

and not disruptive of primary task performance (Eggemeier,

1980).

Sheridan and Simpson (1979) developed a prototype

subjective rating method for Instrument Flight Rules pilot

workload modeled closely after the Cooper-Harper (1969) rating

system which was developed to evaluate aircraft handling

qualities. Rehmann et.al. (1983) developed a technique by

which participants subjectively rated workload every 60 s

during the task, using a mechanical device, to overcome bias

effects in subjective ratings at the conclusion of the task.

Wierwille and Conner (1983) evaluated twenty workload measures

using a psychomotor task in a moving-base aircraft simulator.
~They concluded that well-designed subjective rating scales

~were among the best techniques for evaluating psychomotor

load.

Conjoint measurement theory, which might best be

described as a general modeling and scaling approach, has

been used to develop multidimensional subjective measures

of workload. Reid et.al. (1981) used conjoint measurement

Stheory to construct interval level workload scales from ordinal
rankings of combinations of levels on three contributory
workload scales from ordinal ranking of combinations of levels

sytmwihwsdvlpdtoeaut icathnln
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on three contributory dimensions. The dimensions were time

load, mental effort load, and psychological stress load.

They concluded that their subjective assessment technique

was sensitive to differences in workload on a critically

unstable tracking task.

Donnell and O'Connor (1978) and Donnell (1979) applied

conjoint measurement theory to fighter aircraft to develop

an interval scale measure of aircraft system operability.

System operability was assumed to represent a combination

of a number of factors, including the amount of workload

required by the operator in performance of a task, and the

degree of subsystem technical effectiveness demonstrated

in accomplishment of the task. In order to develop an interval

scale of systems operability, Donnell and O'Connor (1978)

developed separate four-point ordinal rating scales for pilot

workload and system technical effectiveness. Using conjoint

measurement and related scaling procedures, independent ratings

by pilots on each of these two dimensions were eventually

combined and converted into an interval scale of systems

operability. Donnell (1979) subsequently modified the pilot

workload and technical effectiveness scales and applied them

to a different aircraft. An interval scale of systems operability

was also derived in this application with use of the conjoint

measurement technique.

Whereas the interval scale produced by conjoint measurement

theory may be sensitive to changes in workload or changes

% N,
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in aircraft quality, it has not been demonstrated that the

derived interval scale is an improvement over the ordinal

scale. Furthermore, the ordinal rating scale itself, upon

which inferences and scale development is made, may not be

sufficiently precise.

..
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OBJECTIVES

The primary objective of this research is to investigate

whether conjoint measurement theory can be effectively used

to improve the quantification of subjective ratings of aircraft

quality, pilot workload, etc. In particular, the interval

scale produced by conjoint measurement theory will be examined

to determine if it is a true improvement over an ordinal

scale. The structure of conjoint measurement theory and

the effectiveness of its representations are examined through

a prototype example of aircraft quality.

4
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CONJOINT MEASUREMENT THEORY

Conjoint measurement theory is developed in the following

primary references: Shepard (1962a, 1962b), Kruskal (1964a,

1964b), Luce and Tukey (1964), Kratz and Tversky (1971),

and Baird and Noma (1978). Parts of the following description

of conjoint measurement theory and associated algorithms

are based upon Nygren (1981).

Conjoint measurement can be defined as the procedure

whereby we specify for a given combination rule, the conditions

under which there exist measurement scales for the dependent

and independent variables, such that the order of the joint

effects of the independent variables in the data are preserved

by the numerical composition rule. Conjoint analysis can

be defined as the procedure whereby the numerical scale values

for the joint effects and the levels of the independent variables

are obtained. One attempts to find the appropriate combination

rule and, assuming the rule is valid, finds numerical functions

that best fit the order of the joint effects in the data

according to the specified rule.

The following discussion primarily concerns additive

conjoint measurement in two factors. Luce and Tukey (1964)

showed that given:

(1) the set A = A1 x A2 , where A1 and A2 are non-empty

sets,

5
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(2) a binary relation Z on A1 x A2 (where "Z" might

be a relation such as "is preferred over", and

(3) if <Al, A2 , > is an empirical relational system

that satisfies the axiom structure of a weak

order (i.e., is connected and transiti",e),

solvability, cancellation, and the Arc midean

property, then,

THEOREM: There exist real-valued functions * n

A, 01 on A1 , and 02 on A2 such that for all (a1 ,

a2 ) and (bI , b2 ) in A

(i) (al, a2 ) (bI , b2 ) if 0(al, a2 ) 0(b I , b2 ),

(ii) 0(al, a2 ) = 01 (al) + 02(a 2 ),

(iii) if 0', 01, and 02 are any other functions

which satisfy (i) and (ii) above, then there

exist real numbers a > 0, 81, and 82 such that

0i = ati + 81, 02 = 02 + 82, and 0' = i0 + 81 + 82.

Thus, given four axioms. that require only ordinal

properties in the data for the binary relation Z, we arrive

at a theorem which guarantees the existence of functions

0, I, and 02 such that numerical scale values can be assigned

to the stimulus objects in such a way that (1) the order

among objects is preserved, (2) the levels of the factors

on which the stimuli vary combine in an independent and additive

fashion, and (3) the numerical scales have interval properties.

In addition to the additive model in (ii), there

"Z.'"
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is the multiplicative model

0(al, a2 ) = 0l(al)02(a2)

and for three or more factors there is a distributive model

and a dual-distributive model.

Krantz and Tversky (1971) determined ordinal properties

that are sufficient for each of the four basic models to

hold. A necessary condition for the existence of an additive

model for two factors is the independence of A1 and A2 (that

is, A1 is independent of A2 and A2 is independent of A1 ).

A1 is said to be independent of A2 whenever

(a1 , a2 ) Z (bI , a2 ) if and only if

(al, b2 ) (bl, b2 )

Thus, the independence of A1 implies that if a1 l b1 for

one level in A2 , then this relation will hold for any other

level in A 2.

Given the set of necessary ordinal properties, it

is possible to evaluate each of the four basic models for

a set of observations obtained from a factorial design.

It is sufficient to require each subject to present only

rank-order estimates to each of the stimulus combinations

generated by combining levels of the factors. In most applications

of conjoint measurement theory, it is the additive model

that is of interest. However, even for an additive model

with two factors of several levels, both the testing procedures

for the ordinal properties and the scaling procedure for

obtaining the numerical scale values become tedious if not

impractical without the aid of a computer-based algorithm.



CONJOINT MEASUREMENT ALGORITHM

There are computer algorithms which test whether

the necessary ordinal properties hold. Two primary programs

are CONJOINT (Holt and Wallsten, 1974) and PCJM2 (Ullrich

and Cumming, 1973). These programs test for independence

among the factors and count the number of violations of the

necessary ordinal properties, specifying the data cells involved

in violations.

There are, in addition, computer algorithms which

use nonmetric conjoint scaling techniques to fit a given

data structure to an additive, multiplicative, distributive

or dual-distributive model. Two conjoint scaling approaches

considered in the present research are the delta-scaling

method (see COOMBS, 1970) and the computer algorithm MONANOVA

(MONotonic ANalysis of VAriance) developed by Kruskal (1965).

The delta scaling method is an algorithm for converting

an ordinal scale to a scale with interval properties satisfying

the conditions of additive conjoint measurement. In this

approach, an additive representation is sought which satisfies

inequalities specified by the orderings of preference of

the elements in the set A = A1 x A2 . The solution is found

using linear programming methods. Scale values for levels

of the factors are found. If the number of factors and the

levels are not large, this approach is ammenable to "hand"

calculation.

8
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MONANOVA is used to fit data to an additive model

by way of a nonmetric scaling procedure. In MONANOVA, a

monotonic transformation of the data is found which leads

to estimates of the scale values for levels of the factors.

These scale values are such that when they are combined by

way of an additive composition rule, their joint effects

best fit the original data. This process is now described.

First, an initial configuration (an initial set of scale

values for the levels of the factors) is generated or read

by the program. After this configuration is normalized,

a set of distances, dj, is calculated based upon the additive

rule. The program next uses a monotone regression subroutine

to create disparities, dj, which are modified distances subject

to the constraint that they are monotonically ordered in

the same way as their corresponding raw data values. To

estimate how well the model fits the data, a goodness-of-fit

measure called STRESS is computed. STRESS is defined by

Ell (dj jd '
n )2

STRESS = n (d -d) 2

J
1 

.j=l

where n is the number of stimuli and d is the mean distance

value. If the model were to fit the data perfectly, than

the STRESS would be zero. MONANOVA uses the method of gradients

in an iterative fashion to find the configuration that will

. .
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minimize STRESS. MONANOVA prints the final configuration

coordinates (the scale values of the levels of the factors)
and the history of the iterative procedure.

.1 
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. . . .

PROTOTYPE EXAMPLE

Conojoint measurement theory is examined through

a prototype example.

A new fighter aircraft has been developed. We would

like to quantify a test pilot's subjective ratings in order

to compare this aircraft with other classes of fighter aircraft

and to identify strengths and weaknesses.

Suppose that the aircraft is to be subjectively rated

on two different factors: factor A and factor B. Factor

A might be workload and factor B might be subsystem effectiveness.
Let factor A have verbal descriptive levels al, a2 , and

a3 and factor B have verbal descriptive levels bI , b2 , and

b3.

.op.
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A MULTIFACTOR ORDINAL SCALE

Our objective is to convert a subjective rating pair

-a rating on factor A and a rating on factor B- into an

ordinal number that represents the overall quality of the

aircraft. We will develop an ordinal scale of aircraft quality.

Four basic steps are required to convert subjective

ratings into meaningful ordinal numbers so that a comparison

between aircraft can be made.

First, a rating standard must be established by a

group of pilots to which the test pilot belongs. Each pilot

in the group is asked to rank order the cells (ai, bj) in

the rating matrix for factors A and B in Fig. 1, using the

integers 1 through 9. (The row-column arrangement in the

rating matrix, i is the row and j is the column, is for mathematical

convenience.) Suppose, for the purpose of discussion, that

all pilots in the group decide upon the rank ordering given

by the matrix M

M =2 5 8i

L 4 7 9

Thus, (a3, b3 ) is the most preferred and (al, bI ) is the

least preferred. It is noted that rank ordering is a weak

mathematical description; while (a3 , b3 ) is preferred over

(a2 , b3 ), it is not known by how much. Observe that in M

the pilot is expressing a preference in which he weighs the

12
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FACTOR B

bI b2  b3

FACTOR A a2

a3,

Fig. 1. Rating Matrix for Two Factor Ordering.

U,'

a8 a2 a3

FACTOR A j~~ XI !
b, b2  b3

FACTOR 8 X
9X

Fig. 2. Example Subjective Ratings for New Aircraft.

U
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importance of one factor with another. Matrix M defines

a transformation in which each verbal descriptive pair (ai bj) P

is mapped to a unique ordinal number; it produces an ordinal

scale of aircraft quality.

Second, after having flown the new aircraft, the

test pilot is asked to give subjective ratings for factors

A and B. Suppose his ratings are those indicated by x in

Fig. 2.

Third, the test pilot's subjective ratings are converted

to a single ordinal number using the transformation determined

in the first step. Thus, by the transformation M the aircraft

quality is an 8.

Fourth, the ordinal number must be interpreted. This

is simpler than in an independent factor by factor comparison.

The new aircraft is "better" than another fighter aircraft

with a 7, but "inferior" to one with a 9.

There are a number of disadvantages in this approach.

First, it may be difficult to design a questionnaire such

that there is general agreement in the pilot group on the

rank ordering. Second, it may not be possible for the human

to intelligently rank order several factors, each with a

number of levels. Third, an aircraft may have a lower ordinal

rating than another, but it is not immediately known which

factor contributed most to the problem. Fourth, the ordinal

numbers provide only a qualitative measure.

However, the composite multifactor approach, provided

. . , % , " '.' , % _ ' '.' .' ' .'. % ,. .-. ., . .% . .. .-. '.- ,., .- '. A. - . .- -.- - ,- '. . . , ,,
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the questionnaire is properly designed and the transformation

is generally agreed upon, can be expected to give a meaningful

ordinal number by which aircraft can be simply and directly

compared.

Il
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A MULTIFACTOR CONJOINT MEASUREMENT INTERVAL SCALE

We would like to convert the multifactor ordinal

scale on factors A and B into numbers that have greater preciseness;

we will use conjoint measurement theory to develop a scale

of aircraft quality that has interval properties. In this

analysis we will, in addition, prescribe numbers to verbal

descriptions (that is, scale these descriptions) and model

the aircraft quality as functions of the given factors.

Conjoint measurement theory has a subtle relationship

with the analysis of variance. We begin by examining the

underlying model for the analysis of variance.

We will assume in our initial analysis that the integers

assigned to the cells of the rating matrix have precise mathematical

meaning, rather than only expressing an ordering. Thus,

the matrix M in (1) can be considered as data from a two-factor

experiment.

We consider the underlying (deterministic) model

for an analysis of variance of a two-factor experiment with

three levels for each factor, no replication effects, and

no random effects in the data. This model is given by

Yij = P + ai + aj + (aa)ij, (2)

where Yij is the observation taken at the ith level of factor

A and the jth level of factor B, p is the grand mean, ai

is the effect of the ith level of factor A, 8j is the effect

of the jth level of factor B and (aa)ij is the interaction

16
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of the ith level of factor A and the jth level of factor

B. The model is further specified by

3 3 3 3

Z i = Zaj = E(aa)ij = Z(aS)ij = 0. (3)

i=l j=l i=l j=l

We identify Yij with the elements of M and solve for the

parameters in (2). The relationships in (2) and (3) provide

seventeen equations that uniquely define the sixteen parameters.

The parameters are

1= 5

(al, a2, a3) = (-5/3, 0, 5/3) (4)

(81 82 83) (-8/3, 0, 8/3)

1/3 -1/3 01

(aB)ij -1/ 0 1/3

L-O 1/3 -1/3j

We make two observations. First, according to the

model there are interactive effects. Second, the model has

assigned numbers ai and 8j to the verbal descriptive levels

ai and bj. These numbers give an indication of how "close"

of how "far apart" the verbal descriptive levels are.

We illustrate what the model does. Suppose the interactive

effects are identically zero, then the data would be represented

by

Yij = + Ii + $j. (5)

This equation is the discrete version of the equation of

a plane

y=i +a +$ (6)

,J . - - % - . , -, % , - - - % , - . , , . . . . . . . . . .- . . . . . .. .
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defined on the a and 8 axes. Thus, in the absence of interactive

effects, the model assigns numerical values to the levels

of the factors A and B in such a way that the data values

lie in the plane defined by (6). If there are interactive

effects, then not all of the data values can be placed in

this plane.

Suppose we drop the interactive terms in our representation

of M in (2). We then have a new set of numbers Yij, which

in general are different from the data values Yij, defined

by

Yij =  + ai +  9, •(7)

with ji, ai and 8j given in (4). We introduce the variables

!ti = ai + 5/3, (8)

at = 8j + 8/3, (9)
II I

Yij = yij - 2/3, (10)

into (7) to obtain

Yij = i + 8j. (11)

We denote the set of values Yij by T. Matrix T is given

by

T = .67 4.33 7.0. (12)

3.33 6.00 8.67

(The elements of T are fractions; however, for the purpose

of later comparisons, they are expressed as decimals.) Observe

that while the matrix elements in T have different values

than those in M, the rank ordering of the elements has been

preserved.
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We have in effect transformed the data in M to "new

data" in T in such a way that the rank ordering is preserved

and the new data satisfies an additive model. This transformation

of data is illustrated in Fig. 3. Note that numbers have

been assigned to the verbal descriptive levels (that is,

they have been scaled) and each cell value in the new data

matrix is the sum of the row and column scales.

What we have done is the essence of conjoint measurement;

we have found a transformation of the data that preserves

the rank ordering and such that a model (in this case, an

additive model) holds. Through the transformation we have

produced a scale of aircraft quality that has interval properties

(the elements of T have precise numerical values while the

elements of M, as originally defined, express only a rank

ordering). We have also scaled the verbal descriptive levels

of each factor. The model provides a simple law: the measure

of aircraft quality is the sum of two scaled factors.

We transformed the data by neglecting the interaction

terms in the deterministic model for the analysis of variance.

The general approach in additive conjoint measurement, however,

is to systematically search for the order preserving transformation

such that the interactive effects are best reduced in the

transformed data. Two conjoint measurement methods are now

examined: delta-scaling and MONANOVA.

4o
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7FACTOR B FACTOR B

b I b 2  b 3  0 2.67 5.33

a, 1 3 6 0 0 2.67 5.33

.,..FACTOR A a2 2 5 8 - ~ FACTOR A 1.67 1.67 4.33 7.00

a83 4 7 9 3.33 3.3316.0018.671
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AN INTERVAL SCALE DERIVED BY DELTA SCALING

In the previous section we used the underlying model

for the analysis of variance to transform the ordinal scale

to an interval scale in such a way that an additive model

held. We now make connections to the earlier presentation

of conjoint measurement theory.

The assignment of preference to the cells (ai, bj)
for factors A and B, given in the matrix M in (1), satisfies

the axioms in the conjoint measurement theorem for an additive

model. In particular, the factors A and B are independent.

(The rows (columns) in M are all of the same rank order.)

Thus, by the theorem, there exist real--valued functions

on A x B, *l on A, and 02 on B such that for all (ai, bj)

in A,O(ai, bj) = 0l(ai) + 02(bj). Furthermore, any other

functions 0 44, and 0 which satisfy the theorem are related

through linear transformations to 0, 01, and *2-

The basic theorem does not provide a procedure to

obtain the functions 0, 01, and 02. However, in the previous

section, we in effect constructed a set of functions that

had the additive property. Thus, any other set of functions

which we might determine by other methods must be related

to the functions we have already found.

We now apply the delta scaling method to our subjective

rating problem. The delta scaling method has been used in

the assessment of fighter aircraft (Helm et.al., 1974). We

21

..



22

use the "tally sheet" procedure in the cited reference, set

all "d"s equal to unity, and obtain the matrix T'
0. 7. 14.1

[o.I
5T' . 12. 19. (13)

9. 16. 23.

As in T, each element in T' is the sum of the corresponding I
row and column scales. Each element in T' is a constant

multiple of the corresponding element in T, as guaranteed

by the theorem.

We have through conjoint measurement theory converted

an ordinal scale to an interval scale in such a way that

an additive model holds.

Delta scaling by hand computation is generally impractical.

In further analysis the computer algorithm MONANOVA is used.

,'a,

y.
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AN INTERVAL SCALE DERIVED BY MONANOVA

MONANOVA is an algorithm that seeks the monotone

(hence, order preserving) transformation of the data such

that the transformed data best fit an assumed linear model.

It employs a gradient search. The degree to which the transformed

data fit the model is indicated by the STRESS.

We apply MONANOVA to the ordinal matrix defined by

M in (1). For an additive model, the MONANOVA computer algorithm

- ~ produces, with zero STRESS, the matrix T" defined by

- [ 00 1.47 2.94

92 2.39 3.86 (14)

.84 3.32 4.77
Scales for factor A and factor B are given in T" by the first

column and first row, respectively. Each element in T" is

the sum of the corresponding row and column scales.

As in T' in (13), each element in T is a constant

multiple of the corresponding element in T.

23
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SENSITIVITY ANALYSIS

Through conjoint measurement we have converted an

ordinal scale of aircraft quality to one that has interval

properties. We will consider how the interval scale values

change when there are small perturbations in the rank orderings.

We use as the unperturbed state the rank ordering

in M1

1 3 6

M1  5 (15)

and as perturbed states Mi

Mi = 6 (16)

and Ml

Mt e 4 : (17)

Matrices Mj and M" are obtained from M1 by interchanging

two elements. The perturbed rank orderings are reasonable.

So that we can make comparisons, we "normalize" the

computed interval scale so that the largest interval value

is 100.

One would hope that the perturbations in the rank

orderings would cause only local effects in the interval
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scale values. But this is not the case, as may be seen in

Fig. 4. The perturbation given by Mj caused a shift of the

interval scale values to the right and the perturbation given

by MI caused a shift of the interval scale values to the

left.

These general shifts make it difficult to interpret

the interval scale values and cast doubt upon the validity

of the scales. Even though the cell with the ordinal 8 was

not perturbed, it was mapped through conjoint measurement

to 80.9, 84.6 and 73.1 for Ml, Mi and Mj, respectively.

Suppose it was believed that 75. was a "passing" score.

Then an 8 or 9 would be passing if M1 was the standard; a

7, 8, or 9 would be passing if Mj was the standard; and only

9 would be passing if M1 was the standard.

We examine the perturbation effects when the number

of levels is increased. We assume four levels for each factor.

We define the unperturbed state by M2

1 3 6 10

M2= 2 5 9 13 (18)

4 8 12 15

7 11 14 16

And the perturbed states by Mi

1 " 3 6 9

Mi= 2 5 10 13 (19)

" 4 8 12 15

7 11 14 16
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1 2 3 4 5 6 7 8 9
A. I ,[.I , I

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

1 2 3 4 56 7 8 9
B. 'I I'I I I 1

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

1 2 3 45 6 7 8 9

C , , ,' , , ,
0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

Fig. 4. Interval Scale Values Determined Through Conjoint
Measurement for Ordinal Data in A. Ml, B. MI,
and C. Ml.
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and M2

1 3 6 101

2 5 9 13

M2'= 4 7 12 i5 (20)

8  11 14 16]

The interval scale values determined through conjoint

measurement for the ordinal data in M2 , M2, and M" are given

in Fig. 5. While the perturbations still cause shifts in

the interval scale values, they are not as pronounced as

in the three-level case.
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1 2 3 4 5 67 8 910111213 14 15 16
A. I 11I I'I II I I*II*II I I I

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

1 2 3 4 5 67 8 91011 1213 14 15 16
B. I II I

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

1 23 4 5 678 9 1011 12 13 1415 16
C. . I I ! II I II I I I * I

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

Fig. 5. Interval Scale Values Determined Through Conjoint
Measuremnt for Ordinal Data in A. M2 , B. M2,
and C. M2.
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SUMMARY

A subjective rating pair on factors A and B in the

prototype example was converted into an ordinal number that

represented the overall aircraft quality using four basic

steps. First, a rating standard was established in which

the factor pairs were rank ordered. Second, the pilot was

asked to rate the new aircraft in the two factors. Third,

the pilot's subjective ratings were converted into a single

ordinal number using the transformation of the first step.

Fourth, the ordinal number was interpreted, allowing comparisons

between aircraft.

There are a number of disadvantages of this approach.

First, there may not be general agreement in the pilot group

on the rank ordering. Second, the human is limited in his

capability to rank order several factors, each with a number

of levels. Third, the role of a specific factor is disguised

in the ordinal scale. Fourth, the ordinal numbers provide

only a qualitative measure.

If, however, the questionnaire is properly designed

and the rank ordering is generally agreed upon, this approach

can be expected to produce a meaningful ordinal number by

which aircraft can be simply and directly compared.

Conjoint measurement theory was introduced using

the underlying model for the analysis of variance in a two-factor

experiment. When the interactive terms in this model were
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dropped, the model produced an interval scale with additive

properties. The verbal descriptive levels were scaled; that

is, numbers were assigned to them.

The general approach in additive conjoint measurement

theory is to systematically search for the order preserving

transformation such that the interactive effects are best
reduced in the transformed data. Two conjoint measurement

methods were examined: delta scaling and MONANOVA.

The delta-scaling method produced an interval scale

with additive properties. The associated transformation

differed from that of the analysis of variance model by a

constant factor as guaranteed by the conjoint measurement

theorem for an additive model.

An interval scale was derived using the computer

algorithm MONANOVA. MONANOVA is an algorithm that seeks

the monotone transformation of data such that the transformed

data best fit an assumed linear model. The associated transformation

again differed by constant factors from those of the other

two approaches.

A sensitivity analysis was made using MONANOVA.

One might expect that "small" perturbations in the rank orderings

would cause only local effects in the interval scale values.

This was not the case, for when two elements were interchanged,

large shifts occurred in the interval scales. When *he number

of levels was increased from three to four, th; perturbation

influence on the interval scale was reduced.
.9
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CONCLUSIONS AND RECOMMENDATIONS

The multifactor ordinal scale is a meaningful measure

of aircraft quality. Like all subjective ratings, its validity

depends upon whether there is a generally agreed upon rating

standard and whether the test pilot's subjective ratings

conform to the standard. These issues can be largely managed

through the selection and training of test pilots and through

the design of questionnaires.

An improvement in the ordinal scale could be made

by allowing a more quantitative ordering; for example, by

allowing equal or great-than-integer ordering. Also, it

may be appropriate to assign scalar values to the cells of

the rating matrix.

The primary limitation of the multifactor ordinal

scale is the ability of the human to rank order several factors

with several levels. It may be possible to develop mathematical

models to assist the human in the rank ordering. For example,

there may be enough information to determine a complete rank

ordering if the human rank orders the levels of the factors

and also rank orders the factors themselves.

The interval scale determined by conjoint measurement

theory does not appear to be an improvement over the ordinal

scale in the prototype example. To begin with, imprecise

data is generated through the imposition of the weakness

of rank ordering. (The assignment of scalar values to the
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cells of the rating matrix could make the data more precise.)

This data in effect is then transformed to fit a model.

This approach would be acceptable if the model reflected

the "true world" and it acted to "improve" the data. However,

there is no assurance that a specific model will improve

the data; and thus the interval scales have questionable

validity. The major changes in the interval scales caused

by small perturbations in the rating matrix illustrate the

'4 difficulty in interpreting the interval scales.

Conjoint measurement methods should be explored as

a basic modeling and scaling approach - along with other

methods - to seek the constitutive laws of subjective ratings.
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